Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues.
نویسندگان
چکیده
Injectable "smart" microspheres that are sensitive to both temperature and pH have been fabricated and tested for controlled delivery of therapeutic proteins to ischemic skeletal muscle. A library of copolymers composed of N-isopropyl acrylamide (NIPAAm), propyl acrylic acid (PAA), and butyl acrylate (BA) was used to fabricate microspheres using a double emulsion method, and an optimal formulation made from copolymers composed of 57 mol.% NIPAAm, 18 mol.% PAA and 25 mol.% BA copolymers was identified. At 37°C and pH representative of ischemic muscle (i.e. pH 5.2-7.2), these microspheres produced sustained, diffusion-controlled release, and at normal, physiological pH (i.e. pH 7.4), they underwent dissolution and rapid clearance. Delivery of fibroblast growth factor 2 was used to confirm that protein bioactivity was retained following microsphere encapsulation/release based on a dose-dependent increase in NIH3T3 fibroblast proliferation in vitro. Microsphere-loaded or free Cy5.5-labeled albumin was injected into ischemic and control gastrocnemii of mice following unilateral induction of hind limb ischemia to model peripheral arterial disease. In the ischemic limb at days 3.5 and 7, there was higher local retention of the protein delivered via microspheres relative to injected free protein (p<0.05). However, clearance of protein delivered via microspheres was equivalent to free protein at later time points that correspond to ischemic recovery in this model. Finally, histological analysis of the gastrocnemius revealed that the polymeric microspheres did not produce any microscopic signs of toxicity near the injection site. These combined results suggest that the pH- and temperature-responsive microspheres presented herein are a promising technological platform for controlled protein delivery to ischemic tissue.
منابع مشابه
FeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer
Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کاملUse of human amelogenin in molecular encapsulation for the design of pH responsive microparticles
BACKGROUND Proteins can be used in drug delivery systems to improve pharmacological properties of an active substance. Differences in pH between tissues can be utilized in order to achieve a targeted drug release at a specific location or tissue, such as a tumor. The enamel matrix protein amelogenin has a pH dependent solubility profile and self-assemble to form aggregates at neutral pH. This c...
متن کاملDual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کاملDual temperature- and pH-responsive polymeric micelle for selective and efficient two-step doxorubicin delivery
We report a polymeric micelle drug delivery system, which enables selective intracellular uptake with external thermal stimulation, and effective release of a drug at internal acidic endosomal pH. We developed a dual temperatureand pH-responsive polymeric micelle composed of a temperatureresponsive corona segment with poly(N-isopropylacrylamide-co-dimethylacrylamide) [P(NIPAAm-coDMAAm)] and a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2013